
1 Appendix1

Figure 1: Ice–Cream Scooping Task. (Step 1) Initial setup of the scene, with the spoon positioned above the ice
cream cube. A white cup is placed beside the ice cream block to receive the scooped pieces. (Step 2) After the
first scoop, a distinct ice cream piece appears in the cup, shown in a different color to indicate it is a separate
connectivity cluster. (Step 3) The spoon performs a second scooping, inserting into the ice cream cube to gather
another piece. (Step 4) The task is completed with two distinct ice cream pieces, each in its own cluster, now
present in the cup.

1.1 Additional Manipulation Tasks2

While our main focus is on multi-step cutting, our simulator, topology discovery mechanism, and3

spectral reward function extend naturally to other deformable-object tasks. Below, we describe two4

illustrative examples that highlight the potential for extending our framework, using enumerated steps5

for each task’s execution.6

1.1.1 Cream Writing7

In this task, the objective is to “write” a target word (e.g., CORL) by extruding a soft, von Mises-8

plastic “cream” material onto a flat surface. The cream is modeled in MPM with low yield stress9

and high plasticity, allowing it to retain its shape after extrusion. The agent controls a “cream pen”10

at a fixed height above the table. Its state is represented by its (x, y) position, and the action is11

a 3-dimensional vector (∆x,∆y, b), where (∆x,∆y) specifies the pen movement and b ∈ {0, 1}12

toggles the extrusion.13

During the writing process, each continuous stroke formed while b = 1 is considered a single14

connectivity cluster. If the pen is lifted and re-positioned, the next stroke is assigned to a new cluster.15

Thus, the clustering mechanism is naturally defined by the writing process, not by explicit color16

control. The visualization in Figure 2 uses different colors to indicate separate clusters, a distinction17

that becomes critical when computing the spectral-based reward.18

Execution steps:19

1. Position the pen at the starting point for the letter “C,” toggle b = 1, and move rightward to trace20

the stroke, forming the first connectivity cluster.21

1

Figure 2: Cream Writing Task. (Step 1) The cream pen extrudes a continuous stroke to form the letter “C.” (Step
2) The pen lifts, repositions, and extrudes the letter “O.” (Step 3) Next, it draws “R.” (Step 4) Finally, it writes
“L.” Each letter is rendered in a different color to indicate that they belong to separate connectivity clusters. The
color differentiation is not manually controlled but automatically generated based on the clustering, which is
leveraged during the spectral-based reward computation.

2. Lift the pen, move to the position for the letter “O,” toggle b = 1, and extrude to form the second22

cluster.23

3. Reposition to the third slot, toggle b = 1, and draw the letter “R,” creating a new cluster.24

4. Finally, move to the fourth slot, toggle b = 1, and write the letter “L,” forming the final cluster.25

Our spectral reward function evaluates how well each cluster corresponds to the intended letter shape.26

This clustering mechanism provides a natural way to segment distinct components, allowing the27

reward function to assess both spatial structure and connectivity. However, the sequential planning28

of strokes remains a complex decision-making challenge, distinct from the cutting task, and thus29

extending PDDP to handle such “additive” tasks is a promising direction for future work.30

1.1.2 Ice-Cream Scooping31

In this task, the objective is to scoop a chunk from a block of “pudding”-like ice cream (elastoplastic32

MPM) and deposit it into a cup. The agent controls a spoon at a fixed height, using a 2D (x, y) action33

space to position the scoop. Once positioned, the agent executes a predefined scooping primitive as34

follows:35

Execution steps:36

1. Lower the spoon into the ice cream block to initiate contact.37

2. Translate the spoon forward to penetrate and gather the material.38

3. Lift the spoon while rotating it to maintain a horizontal orientation, preventing spillage.39

4. Move the spoon above the cup.40

5. Tilt or open the spoon to release the scooped chunk into the cup.41

The scooped chunk forms a distinct connectivity cluster, separate from the remaining block. As42

illustrated in Figure 1, each scooped piece is automatically assigned a different color to indicate it43

belongs to a separate cluster. This distinction is crucial when computing our spectral-based reward,44

as it allows for quantifying successful segmentation and accurate placement of the scooped pieces.45

2

1.1.3 Discussion46

These two examples demonstrate the extensibility of our MPM-based environment, topology dis-47

covery, and spectral reward function to a broader range of deformable manipulation tasks beyond48

multi-step cutting. The use of distinct clusters to represent separate connectivity components is a key49

mechanism for computing spectral-based rewards, applicable in both “additive” and “scooping” tasks.50

Designing specialized action primitives and learning-based planners for these scenarios remains a51

promising direction for future exploration.52

1.2 Pyramid Cutting Task53

Motivation and Objective. – To further evaluate the generalization capability of our spectral reward54

function to more complex and arbitrary goal shapes, we introduce the pyramid cutting task (Figure 3).55

In contrast to the predefined slicing, sticking, and dicing tasks, this experiment requires the agent to56

carve out a corner segment from a cubic block to produce a pyramid-shaped fragment. The target57

shape is defined as a triangular pyramid with sloped surfaces, representing a more intricate and58

asymmetrical geometry than previous tasks.59

The objective of this experiment is to assess whether the MPPI planning method, driven solely by60

our spectral reward function, can effectively discover a plausible cutting trajectory to achieve the61

desired pyramid shape without any task-specific tuning or retraining. This setup challenges the reward62

function to guide cutting actions that align with more complex, multi-faceted surfaces, testing its63

robustness and generalizability.64

Figure 3: Pyramid Cutting Task. (Left) Cutting Plane: Visualization of the cutting plane planned by the
MPPI controller based on our spectral reward function. The plane is strategically positioned to carve out a
pyramid-shaped fragment from the corner of the cube. (Middle) Cutting Target: The target goal shape, shown as
a point cloud representation, highlighting the desired pyramid structure that serves as a guide for the cutting task.
(Right) Cutting Execution: The scene depicts the execution of the planned cutting trajectory, where the knife
removes the corner section to achieve the specified pyramid shape. The orange particles indicate the material
identified as the target segment to be removed, aligning with the planned cutting plane.

Takeaway. – The results of the pyramid cutting task clearly demonstrate that our spectral reward65

function effectively generalizes to more intricate geometric goals, even in cases involving angled66

and asymmetric surfaces. As shown in Figure 3, the MPPI planner successfully identifies a cutting67

plane that produces a distinct pyramid-shaped fragment from the cube’s corner, aligning well with the68

target structure. The qualitative alignment between the planned cutting plane and the final extracted69

segment validates that the reward function remains a reliable guidance signal, even for complex70

and non-standard shapes. This outcome highlights the adaptability of our framework, suggesting its71

potential to handle more sophisticated and arbitrary cutting tasks in future applications.72

3

1.3 Perception Model Architecture Details73

In practice, we design two distinct styles of perception models to explore their effectiveness in74

our setup: a graph-based model and a point-based model. The graph-based model leverages graph75

convolutional networks (GCNs) and joint attention mechanisms to process structured graph data,76

while the point-based model employs a hierarchical PointNet-style architecture using SPALPA blocks77

to handle point cloud data. After extensive evaluation, we adopt the graph-based model as our final78

choice. This decision is driven by the significant reduction in parameter count (approximately four79

times fewer parameters) and faster training and inference speed compared to the point-based model.80

The PointNet-based architecture, though capable of capturing finer local features, incurs substantial81

computational overhead due to its deeper SPALPA structure and multi-scale processing layers.82

1.3.1 PointNet-Based Perception Model Architecture83

The PointNet-based architecture processes point cloud data through hierarchical SPALPA blocks for84

multi-scale feature extraction. The key components are:85

• Topological Encoder: The primary perception encoder in this architecture, responsible for ex-86

tracting features from 32-dimensional topological inputs. It comprises 5 SPALPA blocks that87

progressively increase feature dimensions as follows:88

96→ 192→ 384→ 768→ 1536

Each SPALPA block includes:89

– Local Attention: Extracts localized spatial relationships through ‘Conv2d‘.90

– Global Attention: Aggregates broader context using multi-scale convolutional layers.91

– Grouper: Implements ‘QueryAndGroup‘ for spatial neighborhood aggregation.92

• Action Encoder: Encodes 2-dimensional action inputs using the same hierarchical structure as the93

Topological Encoder, ensuring feature alignment and consistency.94

• Cross-Attention Network: Integrates topological and action features through CrossAttnNet95

modules, employing PreNorm Attention, cross-attention, and gated residual connections.96

• Decoder: Reconstructs the feature maps and propagates them to the original point cloud resolution97

using ‘FeaturePropagation‘ blocks, merging multi-scale features.98

• Output Heads:99

– Segmentation Head: Projects features to segmentation classes using ‘Conv1d‘ layers.100

– Point Cloud Head: Predicts point coordinates through residual blocks and a final ‘Linear‘ layer.101

Despite its comprehensive feature extraction capability, the PointNet-based model incurs con-102

siderable computational overhead, resulting in slower training and inference compared to the103

graph-based model.104

1.3.2 Graph Network Architecture105

The Graph Network architecture processes structured graph data using GCN layers and attention-106

based mechanisms. The core perception module in this architecture is the t_graph_encoder, which107

encodes topological information through GCN layers.108

• t_graph_encoder: The designated perception module in this architecture, processing node and109

label embeddings through GCN layers structured as:110

3→ 96→ 96

Key submodules include:111

– Node Encoder: Projects 3-dimensional node features to a 96-dimensional latent space.112

– Label Encoder: Processes 32-dimensional node labels through GCN layers.113

– Embedding Encoder: Integrates 192-dimensional precomputed embeddings into a unified114

96-dimensional space.115

• a_graph_encoder: Processes action-related graph data using a similar structure to the116

‘t_graph_encoder‘, but with 2-dimensional action inputs.117

• Joint Graph Transformer: Integrates features from both graph encoders through multi-layer118

attention and cross-attention modules:119

96→ 64→ 32→ 16→ 8→ 4

4

Table 1: Empirical Studies of Pretraining Strategies for Perception Models: We evaluate the effectiveness
of graph-based and point-based perception models under various pretraining strategies, including sorting the
input point cloud, applying Gaussian noise for data augmentation, and downsampling the input points before
processing. The final model selected for deployment is the Graph-Based model with sorting, Gaussian noise,
and 256 downsampled points, balancing accuracy and computational efficiency.

Perception Model With Sort Gaussian Noise Downsample Points Seen Accuracy Unseen Accuracy

Graph-Based ✗ ✗ 128 66.4 48.7

Graph-Based ✓ ✗ 128 73.8 52.1

Graph-Based ✓ ✓ 128 75.4 69.3

Graph-Based (Final) ✓ ✓ 256 77.1 74.1

PointNet-Based ✗ ✓ 2048 73.2 61.2

PointNet-Based ✓ ✓ 512 79.2 75.4

• Query Point Encoder: Processes query nodes in the graph structure through ‘Linear‘ and ‘ReLU‘120

layers:121

3→ 64→ 96

• Output Heads:122

– Node Position Head: Outputs node coordinates through residual blocks.123

– Node Feature Head: Projects node features to a 32-dimensional space.124

The graph-based model provides a more parameter-efficient and computationally feasible archi-125

tecture while maintaining robust feature extraction and representation capabilities, making it the126

preferred choice in our implementation.127

Summary: – We explore both PointNet-based and Graph Network architectures to identify the optimal128

perception model for our setup. While the PointNet-based model employs extensive SPALPA blocks129

for multi-scale feature extraction, its computational cost and parameter count are substantially higher130

than the graph-based model. Consequently, we adopt the graph-based architecture, leveraging the131

t_graph_encoder as the primary perception module due to its significantly lower parameter count,132

faster training and inference speeds, and effective integration of topological and action features.133

1.3.3 Empirical Evaluation of Perception Models134

Discussion and Model Selection: – Table 1 presents a comparative evaluation of graph-based and135

point-based perception models under various pretraining strategies. The primary factors analyzed136

include sorting based on the x-axis, Gaussian noise for data augmentation, and the degree of point137

cloud downsampling.138

• Sorting and Gaussian Noise: Incorporating sorting and Gaussian noise consistently improves139

model accuracy for both seen and unseen data. For the graph-based model, enabling both sorting and140

Gaussian noise increased unseen accuracy from 48.7% to 69.3% under a 128-point downsampling141

setting.142

• Downsampling Strategy: The impact of point cloud resolution is evident as increasing the number143

of points from 128 to 256 in the graph-based model further improved unseen accuracy to 74.1%.144

This result underscores the importance of maintaining sufficient point density to preserve critical145

spatial information.146

• Comparison of Models: The point-based model with 512 points achieves 75.4% unseen accuracy,147

slightly outperforming the graph-based model with 256 points. However, the computational148

overhead associated with the point-based model is significantly higher, consuming approximately149

four times more parameters and resulting in slower training and inference.150

Final Model Selection: – Based on the empirical findings, the graph-based model with sorting,151

Gaussian noise, and 256 downsampled points is selected as the final perception model for deployment.152

This configuration achieves a balanced trade-off between computational efficiency and segmentation153

accuracy, making it a practical choice for large-scale robotic manipulation tasks.154

5

1.4 Policy Model Architecture Details155

In our framework, the policy model architecture is structured to handle skill-conditioned action156

generation through a structured diffusion process. The model, named PDDP (Particle-Based157

Diffusion Policy), leverages adaptive normalization, timestep embeddings, and modular diffusion158

blocks to effectively model action trajectories. Notably, the observation encoder in PDDP utilizes159

the perception encoder previously defined in the Perception Model Architecture section, ensuring160

consistent feature extraction and representation across the pipeline.161

1.4.1 Policy Model Architecture - PDDP162

The PDDP architecture is structured as follows:163

1. Encoders: –164

• Observation Encoder: The observation encoder adopts the perception encoder design outlined165

previously, specifically utilizing the graph-based t_graph_encoder as the primary perception166

module. This encoder processes topological node features through a GCN and includes three key167

submodules:168

– Node Encoder: Projects 3-dimensional node features to a 96-dimensional latent space through a169

2-layer GCN:170

3→ 96→ 96

– Label Encoder: Transforms 32-dimensional node labels to a 96-dimensional space using the171

same GCN structure.172

– Embedding Encoder: Integrates 192-dimensional precomputed embeddings, projecting them173

to 96 dimensions.174

The outputs from each encoder component are processed through a shared ‘LayerNorm‘ to stabilize175

feature representation.176

• Goal Encoder: Encodes 3-dimensional goal vectors through a fully connected network:177

3→ 64→ 96

ReLU activation is applied to the intermediate layer.178

• Timestep Embedding (sigma_map): Encodes the diffusion timestep using a 2-layer MLP:179

256→ 128→ 128

A SiLU activation is applied after the first linear layer to maintain smooth gradient flow.180

• Action History Layer: Integrates action history features through a fully connected layer:181

21→ 128

• Conditional Layer: Aggregates timestep, goal, and action history embeddings into a unified182

feature space:183

256→ 128

2. Backbone - Diffusion Blocks (DDiTBlock): –184

The core processing backbone of PDDP consists of a sequence of 12 DDiTBlocks. Each DDiTBlock185

contains:186

• Self-Attention Layer: Applies self-attention to the feature space with 96-dimensional query, key,187

and value projections:188

96→ 288→ 96

This allows the model to capture dependencies across all points in the point cloud, facilitating189

information exchange across nodes.190

• MLP Layer: Implements a 2-layer MLP with GELU activation:191

96→ 384→ 96

This structure refines the feature representation after the attention operation, maintaining non-linear192

feature transformations.193

6

• Dropout: Applied to both the attention and MLP layers with a probability of 0.4 to mitigate194

overfitting and stabilize training.195

• Adaptive LayerNorm (adaLN): Adaptive LayerNorm is applied to each block using modulation196

inputs derived from both the timestep embedding and goal encoder. The modulation layer is197

structured as:198

128→ 576

This mechanism enables each DDiTBlock to dynamically adjust its feature scaling based on199

task-specific conditions.200

3. Output Layer: –201

The final output layer processes the feature representation generated by the diffusion blocks to predict202

binary classification logits for each point in the point cloud. The output shape is defined as:203

Output Shape: [batch size, num points, 2]

A linear projection is applied to transform the 96-dimensional feature space into 2-dimensional logits,204

representing the binary classification output for each point. This design aligns the output structure205

with the expected action space while maintaining consistency across the diffusion layers.206

Summary: – The PDDP architecture is structured to leverage a modular pipeline consisting of207

encoders for observation, goal, and timestep embeddings, a backbone of 12 DDiTBlocks with208

adaptive normalization and self-attention mechanisms, and a binary classification output layer for209

per-point action prediction. The use of the t_graph_encoder as the primary perception module210

ensures consistent feature extraction and integration across both the perception and policy networks,211

promoting robust action generation in diverse manipulation tasks.212

1.5 Material Point Method in Details213

The Material Point Method (MPM) is a hybrid Lagrangian–Eulerian scheme originally introduced214

by Sulsky et al. for solid mechanics. In MPM, state variables (mass, momentum, deformation) are215

carried on material points (particles), while a fixed Eulerian grid is used to solve the equations of216

motion. This split representation combines the mesh-free advantages of particle methods with the217

stability and boundary-handling capabilities of grid methods.218

Governing Equations – MPM begins from the continuum balance laws in Eulerian form:219

Dρ

Dt
+ ρ∇· v = 0, ρ

Dv

Dt
= ∇· σ + ρ g,

where ρ is the mass density, v the velocity field, σ the Cauchy stress tensor, and g the body-force (e.g.220

gravity). The material derivative D/Dt captures convection of field quantities with the flow.221

Weak Form and Discretization – To derive a tractable discretization, one multiplies the momentum222

equation by a test function q(x) and integrates over the domain Ωn at time step n. Integration by223

parts moves spatial derivatives onto q, yielding the weak form. We then partition Ωn into particle224

subdomains Ωn
p , and approximate both trial and test functions using B-spline shape functions Ni(x)225

centered at grid nodes i. This Galerkin-style projection leads to discrete nodal equations that are226

assembled via sums over particles.227

Particle–to–Grid (P2G) Transfer – Each particle p holds:228

{mp, Vp, vp, Fp}

for mass mp, volume Vp, velocity vp, and deformation gradient Fp. To project onto the grid, we229

compute at each node i:230

mi =
∑
p

mp Ni(xp), (mv)i =
∑
p

mp vp Ni(xp), f int
i = −

∑
p

Vp σp∇Ni(xp),

7

where σp is obtained from the chosen constitutive law (e.g. hyperelastic) evaluated at Fp. These231

transfers ensure exact conservation of mass and momentum.232

Grid Update – On the Eulerian grid, we update nodal momentum via a symplectic (explicit) Euler233

step:234

(mv)n+1
i = (mv)ni +∆t(f int

i +mi g), vn+1
i =

(mv)n+1
i

mi
.

This step advances velocities under both internal stresses and external forces, while preserving235

stability for moderate time steps.236

Grid–to–Particle (G2P) Transfer – After updating the grid, we interpolate back to particles:237

vn+1
p =

∑
i

Ni(xp) v
n+1
i , Cp =

∑
i

vn+1
i ∇Ni(xp)

T ,

where Cp is an affine velocity gradient matrix (used in variants like APIC) that captures sub-cell238

velocity variation.239

Deformation Gradient Update – The particle deformation gradient evolves according to240

dF

dt
= (∇v)F.

Using the interpolated velocity gradient Cp, we discretize:241

F n+1
p = (I +∆t Cp)F

n
p ,

so that Fp accumulates the local deformation history on each particle.242

Stress Computation – For hyperelastic materials, one defines a strain-energy density Ψ(F) and243

computes the first Piola–Kirchhoff stress244

Pp =
∂Ψ

∂F
(Fp),

then the corresponding Cauchy stress245

σp =
1

detFp
Pp F

T
p .

This stress is used in the P2G transfer to produce internal forces.246

Algorithm Summary – At each timestep, MPM executes:247

1. P2G: Transfer {mp, vp, Fp} to grid nodes {mi, vi, fi}.248

2. Grid Update: Integrate nodal momentum, compute vn+1
i .249

3. G2P: Interpolate vn+1
i and ∇v back to particles.250

4. State Update: Update each F n+1
p and compute σp.251

5. Advection: Move particles: xn+1
p = xn

p +∆t vn+1
p .252

6. Reset: Clear grid variables for the next iteration.253

Thanks to its hybrid nature, MPM can robustly simulate extreme deformations, fracture propagation,254

and multi-body contact without remeshing, making it a powerful tool in graphics, engineering, and255

robotic manipulation contexts.256

1.6 Particle-based Damage-tracking and Topological Reconstruction in Details257

We propose a robust particle-based method to accurately determine whether a cutting action success-258

fully separates an object into discrete pieces. Our approach integrates particle-level damage tracking259

with topological surface reconstruction using the Material Point Method (MPM) as shown in Figure 4.260

Within our MPM framework, each particle’s deformation state is computed, and we define a particle261

as “damaged” based on critical compression and stretch thresholds in its deformation gradient F.262

Formally, a particle p is classified as damaged if:263

Jp ≤ (1− ϵc)
m or Jp ≥ (1 + ϵs)

m, (1)

8

Figure 4: Particle-based damage-tracking and topological reconstruction during a cutting action. Gray and pink
particles remain intact, while damaged particles (purple) mark the cut interface. From these damage signals we
build an implicit SDF, extract the zero-isosurface via Marching Cubes, and then cluster connected components
to recover discrete object segments.

where Jp = det(Fp), ϵc, ϵs denote critical compression and stretch values, and m is a material-264

specific sensitivity exponent.265

In practice, we select the compression and stretch thresholds ϵc and ϵs so that they correspond directly266

to the maximum volumetric change a particle can undergo before being flagged as damaged. Recall267

from Eq. (1) that268

Jp = det(Fp)

measures the local volume ratio of particle p. For example, setting269

ϵc = 0.025, ϵs = 0.01

means that a particle whose volume has decreased by more than 2.5% (Jp ≤ (1 − 0.025)m) or270

increased by more than 1% (Jp ≥ (1 + 0.01)m) is classified as damaged. These values are chosen to271

be small enough to detect the onset of fracture in brittle materials, yet large enough to avoid false272

positives under normal elastic deformation.273

The exponent m modulates how sharply damage accumulates once Jp deviates from unity: a larger274

m yields an abrupt transition from “healthy” to “damaged,” whereas a smaller m produces a more275

gradual damage accumulation. We calibrate ϵc, ϵs, and m using simulated uniaxial compression and276

tension tests: a small block is deformed at a constant strain rate, we record its volumetric Jacobian277

history, and then choose the smallest thresholds that cleanly separate reversible (elastic) behavior278

from irreversible damage.279

For more ductile or plastic materials, one might increase the stretch threshold (e.g. ϵs ≈ 0.05) and use280

a lower sensitivity exponent (e.g. m = 1 or 2) to model gradual yielding. Conversely, for near-brittle281

media a tighter compression bound (e.g. ϵc ≈ 0.01) and higher exponent (e.g. m ≥ 4) better capture282

sudden fracture. By anchoring these parameters to physically measurable strain limits, our framework283

remains both interpretable and readily tunable across a wide range of material behaviors.284

For more complex yielding materials, such as those modeled with von Mises plasticity, damage285

occurs when the yielding stress σy falls below zero after particle softening:286

σ(t+1)
y = σ(t)

y − γ∥∆ϵp∥, with Damagedp =

{
1 if σ(t+1)

y ≤ 0,

0 otherwise,
(2)

where γ is the particle softening coefficient and ∆ϵp represents incremental plastic strain.287

9

Once particles become damaged, their mechanical properties are altered irreversibly, enabling288

consistent tracking of the damaged state throughout subsequent simulation steps.289

To reconstruct and evaluate object topology following a cut, we perform explicit topological segmen-290

tation leveraging the particle damage signals and knife trajectory data. We track the knife trajectory291

precisely during interactions, ensuring a clean spatial separation between object segments. After292

the completion of a cut action, defined by a stationary knife and changed particle damage states, we293

reconstruct the object’s surface mesh from particle data through an implicit surface representation294

using Signed Distance Fields (SDFs) and the Marching Cubes algorithm.295

Formally, given the set of particles P and knife trajectory T , we first construct an implicit SDF296

representation SDF (x) of the object’s spatial domain:297

SDF (x) = min
p∈P
∥x− xp∥−rp, (3)

where xp is the position of particle p, and rp is its effective influence radius. Critically, we incorporate298

the knife trajectory T by explicitly marking trajectory regions within the SDF, enforcing a strict gap299

devoid of particles. This guarantees that no particle fills the knife’s trajectory space, creating a clear300

geometric boundary between separated pieces.301

We perform surface reconstruction by extracting the zero-isosurface of the computed SDF using302

a GPU-accelerated Marching Cubes implementation provided by Warp [?]. Specifically, we first303

define a discrete volumetric grid around particle positions, evaluate the SDF values, and then generate304

vertices and faces for the surface mesh:305

vertices, faces = MarchingCubes(SDF (x) = 0). (4)

This mesh reconstruction process ensures explicit representation of separated object components.306

After extracting mesh segments, we apply Laplacian smoothing to refine surface quality:307

vi ← vi + α
∑

j∈N (i)

(vj − vi), (5)

where vi is a vertex in the mesh, N (i) are neighboring vertices, and α is a smoothing factor.308

Subsequently, we cluster these reconstructed mesh segments into distinct topological pieces by309

performing connected component analysis on the extracted mesh faces. Each particle is then assigned310

a cluster identity by evaluating its spatial relationship to these mesh segments. Given particle positions311

xp and cluster meshes, we perform the following SDF-based assignment:312

Clusterp =

{
i if SDFi(xp) < τ,

−1 otherwise,
(6)

where SDFi is the SDF for cluster mesh i, and τ is a proximity threshold.313

After assigning new cluster identities, we update the global object topology by comparing current314

particle clusters to previously stored cluster identifiers. New cluster IDs are assigned whenever315

new separate segments emerge, thus preserving consistent object segmentation across simulation316

timesteps.317

This methodical combination of particle damage tracking, implicit surface reconstruction, and mesh-318

based clustering provides a robust and efficient solution for detecting and managing the topological319

changes that occur during robotic cutting tasks. Our approach ensures accurate evaluation of cutting320

outcomes essential for effective policy learning and performance assessment.321

1.7 Pose-Invariant Shape Evaluation via Spectral Analysis in Details322

After discovering object topology, we require a robust metric to evaluate how closely the segmented323

fragments match the intended goal shape. Traditional point-set distances, such as Chamfer or Earth324

Mover’s Distance, are sensitive to pose variations and require explicit alignment. To overcome these325

10

limitations, we introduce a spectral-based reward derived from the intrinsic geometry of shapes,326

inherently invariant to rigid transformations.327

Given a point cloud X = {xi}ni=1, we construct a k-nearest neighbor graph where the edge weight328

between points i and j is defined as329

Wij = exp

(
−
d2ij
σ2

)
, (7)

with dij the geodesic distance between points and σ a scaling parameter. We then build the degree330

matrix D and the combinatorial Laplacian:331

Dii =
∑
j

Wij , L = D −W. (8)

Eigen-decomposition of L yields the smallest k eigenpairs:332

LΦ = ΛΦ, (9)

where Λ = diag(λ1, . . . , λk) contains eigenvalues and Φ = [ϕ1, . . . , ϕk] are the corresponding333

eigenvectors. These spectral descriptors capture intrinsic shape information invariant to isometries.334

Given two shapes X and Y , we define their spectral distance as:335

dspec(X,Y) = α∥ΛX − ΛY ∥22+β∥Φ⊤
XΦX − Φ⊤

Y ΦY ∥2F , (10)

where α, β balance the contributions of eigenvalue and eigenvector differences.336

To transform spectral distance into a reward, we apply a piecewise linear mapping with a critical337

threshold τ :338

R(d) =


Rmax − γd, d ≤ τ,

Rmax − γτ − δ(d− τ), d > τ,

(11)

where γ and δ are decay rates (δ > γ), ensuring a gradual reward decline for small errors and sharper339

penalties for large deviations.340

For objects segmented into multiple fragments, we compute the spectral distance and associated341

reward for each fragment pair individually, then accumulate the total reward as:342

Rtotal = κ
∑
i

R(di), (12)

with κ a global scaling factor ensuring consistent reward magnitudes across tasks.343

This formulation provides an efficient, continuous, and pose-invariant reward signal for evaluating344

and planning goal-conditioned robotic cutting actions.345

In order to evaluate the efficient and pose-invariant property, we conduct the following experiments:346

Parameter Definitions and Pose-Invariance Observations – Our spectral-reward pipeline relies on347

three key configuration parameters and a fixed cutting trajectory. Specifically:348

• num_point (= 512) determines how many points are uniformly sampled from the fragment’s349

point cloud to serve as vertices in the spectral graph. A larger num_point yields finer geometric350

resolution but increases graph-construction cost, whereas a smaller value speeds up computation at351

the risk of losing subtle shape details.352

• k (= 30) defines the neighborhood size in the k-nearest-neighbor graph: each sampled point353

connects to its k closest neighbors (by Euclidean distance). This choice balances local connectivity354

(capturing fine features) against spectral stability (avoiding overly dense graphs that blur intrinsic355

geometry).356

• Trajectory refers to the fixed sequence of knife motions (the “default” cutting action) applied to357

all shapes. At each discrete timestep along this trajectory, we recompute the fragment’s spectral358

descriptor and record the resulting reward value.359

11

Figure 5: Pose-Invariance Evaluation of the Spectral Reward. Top: Five ideal stick fragments (5× 5× 32)
rotated through distinct angles. Middle: Reward-versus-cut-step curves for each rotation, computed using dense
particles (left) and mesh-surface particles (right) with num_point=512 and k = 30. Bottom: Corresponding
fragment point-cloud sequences along the default cutting trajectory. The nearly identical curves across all
rotations confirm that our spectral reward is invariant to rigid transformations of the ideal shape.

In our experiment shown in Figure 5, we generate five identical “stick” fragments (5× 5× 32) and360

rotate each by a distinct yaw angle before sampling and evaluation. We then compute two sets of361

reward-vs.-step curves—one using all dense particles, the other using only mesh-surface particles.362

As shown in the overlaid plots, all five curves coincide almost exactly for both representations. This363

confirms that, under our sampling density (num_point=512) and graph connectivity (k = 30), the364

spectral reward is effectively invariant to rigid rotations of the ideal shape.365

Multi-step Spectral-Loss Evaluation – To verify that our spectral reward correctly identifies the366

intended fragment at each cutting step, we conducted a pairwise matching experiment on tele-367

operated MPPI data. After segmenting the object into its constituent pieces, we compute the368

spectral distance dspec(Xsi , Xpj
) between the shape at cutting state si and each fragment pj , for369

i, j = 0, . . . , 4. Figure 6 visualizes the resulting 4× 5 “spectral-loss” matrix: rows index the initial370

and four successive cut states, columns index the five fragment geometries (shown below). Darker371

entries (lower values) indicate stronger intrinsic shape similarity. Notice that for every state si, the372

piece with low spectral distance in previous state still remain in small value despite the fact that the373

piece might fall down due to gravity and there is a new piece with low spectral distance appears.374

This demonstrates both the pose-invariance and discriminative power of our spectral descriptor, and375

justifies its use for automatic labeling and qualitative evaluation of MPPI rollouts.376

1.8 MPPI for Data Generation377

To generate high–quality demonstrations for policy learning we adopt the Model Predictive Path Inte-378

gral (MPPI) sampling–based optimal control scheme [1]. MPPI maintains a horizon–H open–loop379

action sequence U0:H−1 ∈ RH×m (with m = 6 for the knife pose) and repeatedly refines it by380

importance–sampling noisy roll–outs in the deformable–body simulator. For each iteration we draw381

K perturbations {ϵ(k)}Kk=1 ∼ N (0,Σ) and integrate the dynamics forward, harvesting the terminal382

fragments X(k) produced by each sampled cut. The return of a roll–out is the negative spectral383

discrepancy384

J (k) = −Rspec(X
(k), g)−

H−1∑
t=0

C(o
(k)
t , a

(k)
t),

12

Figure 6: Pairwise spectral-loss matrix between each cutting state (rows) and each piece within the state
(columns). Lower values indicate closer intrinsic geometry matches, enabling qualitative MPPI data collection.

where Rspec is the pose-invariant spectral reward defined previously, and C(·) is a small quadratic385

control penalty that biases the knife towards smooth, energy–efficient motions.386

Given the roll–out returns we form importance weights wk = exp(−J (k)/λ) with temperature387

λ = 1/κ and update the mean action sequence in closed form:388

U0:H−1 ← U0:H−1 +

∑K
k=1 wk ϵ

(k)∑K
k=1 wk

.

After n refinement iterations the first action U0 is executed on the robot; the horizon is then shifted389

and replanning continues until the episode terminates.390

During each MPPI episode we log the full state–action–reward tuples {ot, at, Rspec(Xt, g)}Tt=0 as391

well as intermediate mesh reconstructions and knife trajectories. We repeat the procedure for a392

diverse set of goal shapes and material parameters, producing ∼ 6,000 labelled cuts that serve as393

expert demonstrations for subsequent behaviour–cloning.394

To complement the automatically generated dataset we developed a light-weight tele-operation395

interface in which the operator steers the knife with a 6-DoF mouse while discrete cutting commands396

are triggered via keyboard hot-keys. All tele-operated actions are replayed in simulation to obtain397

exact particle damage labels and the same spectral reward used by MPPI, ensuring perfect consistency398

between human and algorithmic demonstrations.399

Together, MPPI planning guided by spectral rewards and targeted tele-operation yield a rich,400

high-fidelity dataset that underpins robust policy learning across the wide range of scenarios posed401

by TopoCut.402

1.9 Policy Learning in Details403

1.9.1 Dynamics-Informed Perception Module404

To efficiently encode dense deformable object states for policy learning, we develop a dynamic405

topology prediction model, denoted as F , which predicts the future topological state conditioned on406

13

the current topological state and action. Formally, we model the dynamics as:407

F : (topot, at) 7→ topot+1, (13)

where both topot and at are represented as point clouds:408

topot = {(xi, fi)}Ni=1, at = {(xj ,gj)}Nj=1, (14)

with xi,xj ∈ R3 denoting 3D coordinates and fi, gj denoting associated point features: cluster labels409

for topology and binary segmentation masks for action, respectively.410

Within F , we introduce a perception encoder Φ that processes point clouds by jointly embedding the411

3D coordinates and their corresponding features:412

zt = Φ(Xt,Ft), (15)

where Xt and Ft are the stacked xyz coordinates and feature vectors, respectively. Φ produces a413

point-wise embedding zt that captures spatial geometry, topological structure, and action intent. This414

embedding is later reused for downstream goal-conditioned policy learning.415

Topological Representation. – For topot, the point features fi encode the cluster membership obtained416

from our particle-based damage tracking, represented as a one-hot vector over a maximum of 32417

clusters. For at, the point features gj are binary one-hot vectors indicating whether the point lies on418

the cutting surface (cut = 1, not cut = 0).419

Learning Objective and Intuition. – The dynamic topology model F is trained to predict how420

the object’s topology evolves under a given action. Specifically, given (topot, at), it predicts the421

resulting topological configuration topot+1. By doing so, Φ learns rich, actionable particle-wise422

embeddings that encode both geometric and topological transformations, enabling robust downstream423

manipulation.424

Preprocessing and Graph Construction. – Assuming access only to noisy surface observations, we425

reconstruct the object’s mesh using Marching Cubes (Warp [?]), sample interior points to form426

volumetric point clouds, and downsample them using Farthest Point Sampling (FPS). A topology-427

aware graph is then constructed, where edges connect nearest neighbors within the same cluster,428

promoting learning of local topological consistency.429

Model Architecture. – The perception encoder Φ consists of two stages: (i) a Graph Convolutional430

Network (GCN) to extract local features from the topology-aware graph, and (ii) a Graph Transformer431

that globally refines the features via self-attention. The output is a set of point-wise embeddings432

encoding spatial and topological context.433

Training Loss. – We jointly optimize Φ with two complementary objectives: geometric consistency434

and topological structure prediction. The overall loss is defined as:435

L = λposLpos + λtopoLtopo, (16)

where λpos and λtopo are balancing weights.436

For geometric consistency, we minimize the Chamfer Distance (CD), Earth Mover’s Distance (EMD),437

and Hausdorff Distance(HD) between predicted and ground-truth point clouds:438

Lpos = CD(X̂,X) + EMD(X̂,X) + HD(X̂,X) (17)

where X̂ and X are predicted and ground-truth point sets.439

For topological structure prediction, we treat clustering as a contrastive learning task, where only the440

relative membership between points matters. A Hungarian matching-based loss is applied:441

Ltopo = min
π∈P

∑
i,j

ℓ(π(ci), ĉj), (18)

where P is the set of bipartite matchings, ci and ĉj are the ground-truth and predicted cluster442

assignments, and ℓ(·, ·) is a binary cross-entropy loss.443

14

Training Data. – The dynamic topology model F is pretrained using state-action-state triplets444

(topot, at, topot+1) collected from the MPPI-based demonstration generation (Section ??). This445

rich dataset covers diverse materials, object geometries, and cutting scenarios, enabling the learned446

embeddings to generalize effectively across a wide range of deformable manipulation tasks.447

1.9.2 Particle-based Score-Entropy Discrete Diffusion Policy448

With the pretrained perception encoder Φ that captures geometric and topological information, we449

now train a goal-conditioned behavior cloning (BC) policy for robotic cutting. The policy operates450

over perception embeddings, taking as input the current object topology and the desired goal shape,451

and predicting the next cutting action.452

Given a point cloud observation ot = (Xt,Ft) representing the current object state, and a goal point453

cloud g = (Xg,Fg), we first obtain their embeddings:454

zt = Φ(Xt,Ft), zg = Φ(Xg,Fg), (19)

where zt and zg are point-wise embeddings encoding geometry and topology.455

The cutting action is represented as a binary segmentation at ∈ {0, 1}N , where each point is classified456

as cut (1) or not cut (0).457

Policy Model: Conditional Score-Based Discrete Diffusion. – Inspired by Score Entropy Discrete458

Diffusion (SEDD) [2], we formulate action prediction as a conditional discrete denoising diffusion459

process over point-wise binary labels.460

In the forward process, the clean action labels a∗t are progressively corrupted into noisy labels ãt461

through a multinomial noise distribution:462

qt(ãt | a∗t) = Multinomial (ãt | pt(a
∗
t)) , (20)

where pt(a
∗
t) denotes the noise schedule at timestep t.463

The policy network sθ is trained to predict the score function:464

sθ(ãt, t, zt, zg) ≈ ∇ãt log qt(a
∗
t | ãt), (21)

where sθ outputs the gradient of the log-posterior of the clean action given the noised action,465

conditioned on the current and goal embeddings.466

This formulation enables the policy to iteratively denoise ãt toward recovering the target cutting467

action.468

Training Objective. – The BC policy is trained by minimizing the Denoising Score Entropy (DSE)469

loss across all diffusion steps:470

LBC(θ) = E(ot,g,a∗
t)∼D

[
T∑

t=1

LDSE(ãt,a
∗
t ; θ)

]
, (22)

where the per-step DSE loss is defined as:471

LDSE(ãt,a
∗
t ; θ) = E

[
∥sθ(ãt, t, zt, zg)−∇ãt

log qt(a
∗
t | ãt)∥

2
2

]
. (23)

Action Reconstruction. – After completing the denoising sampling process, we obtain a binary472

segmentation over the points indicating which regions should be cut. From the points classified as473

cut, we fit a cutting plane, thereby reconstructing the knife’s pose and producing the final action at.474

1. Inputs, Goals, and Perception Embeddings – At each decision step t, the robot observes:475

ot = (Xt,Ft),

where:476

• Xt = [xt,1, . . . ,xt,N]⊤ ∈ RN×3 are the 3D coordinates of N particles representing the object.477

15

• Ft = [ft,1, . . . , ft,N]⊤ ∈ RN×f are associated per-point features, such as normals, damage478

indicators, or material properties.479

A desired goal shape is provided as another point-cloud:480

g = (Xg,Fg) ∈ RN×3 × RN×f .

Both ot and g are passed through a pretrained perception encoder481

Φ : (RN×3,RN×f) −→ RN×d,

which uses graph-based convolutions followed by a small MLP to produce point-wise latent embed-482

dings:483

zt = Φ(Xt,Ft), zg = Φ(Xg,Fg),

where d is the embedding dimension. Intuitively, zt captures the current object’s geometric and484

topological state, while zg encodes the desired target shape.485

2. Action Representation and Forward Noising – We represent the cutting action at time t as a binary486

mask487

a∗t = [a∗t,1, . . . , a
∗
t,N]⊤ ∈ {0, 1}N ,

where a∗t,i = 1 indicates that particle i should be cut. To train our policy using denoising diffusion, we488

first define a forward noising process that corrupts a∗t into progressively noisier versions ã1, . . . , ãT .489

Starting from ã0 = a∗t , each step applies a small random flip:490

qt(ãt | ãt−1) =

N∏
i=1

[
(1− βt) δ(ãt,i = ãt−1,i) + βt δ(ãt,i ̸= ãt−1,i)

]
,

where βt ∈ [0, 1] is a noise-rate schedule (e.g. βt = t/T). After T steps, ãT is nearly uniform491

random.492

3. Score Network and Reverse Diffusion – We train a neural network sθ(ãt, t, zt, zg) to predict the493

gradient of the log-probability of the true mask given the noisy mask:494

sθ(·) ≈ ∇ãt log qt(a
∗
t | ãt).

Concretely, sθ receives as input:495

• The noisy mask ãt (embedded as scalars).496

• The timestep t, encoded with sinusoidal features.497

• The concatenated perception embeddings [zt; zg] ∈ RN×2d.498

During inference, we reverse the noising chain by sampling499

pθ(at−1 | ãt, t, zt, zg) = Categorical
(
softmax(log(1− βt, βt) + sθ(ãt, t, zt, zg))

)
.

This step “denoises” ãt one level at a time back toward a clean mask.500

4. Training Objective: Denoising Score-Entropy Loss – We optimize θ by minimizing the expected501

squared error between the network’s predicted score and the true score over all timesteps:502

LBC(θ) = E(ot,g,a∗
t)∼D

[
T∑

t=1

Eãt∼qt(·|a∗
t)
∥ sθ(ãt, t, zt, zg) − ∇ãt

log qt(a
∗
t | ãt)∥

2
2︸ ︷︷ ︸

LDSE(ãt,a∗
t ;t)

]
.

Because qt uses simple bit-flip noise, the true score gradient has a closed form:503

∇ãt,i log qt(a
∗
i | ãt,i) =

δ(ãt,i = a∗i)− (1− βt)

βt(1− βt)
.

5. Inference and Action Reconstruction – At test time:504

1. Initialize ãT by sampling each bit from Bernoulli(0.5).505

16

2. For t = T, T − 1, . . . , 1, sample at−1 from pθ(at−1 | ãt, t, zt, zg).506

3. The final mask ã0 indicates the cut points.507

4. Fit a planar cut by solving508

min
n,d

∑
i: ã0,i=1

(n⊤xt,i + d)
2
, ∥n∥2= 1,

where n is the plane normal and d its offset.509

Summary. – Our BC policy systematically integrates dynamics-informed perception embeddings510

and conditional score-based discrete diffusion modeling. By treating cutting action prediction as a511

goal-conditioned denoising process over discrete labels, our method achieves robust and generalizable512

cutting behavior across diverse object shapes and cutting goals.513

PDDP naturally handles the combinatorial nature of cutting (multimodal mask distributions) and514

provides smooth trade-offs between sample quality and runtime via T . The closed-form score515

supervision ensures stable training, and the iterative denoising generates crisp, coherent cutting516

actions that generalize across object shapes and materials.517

Overall, our method systematically combines efficient topology tracking, pose-invariant shape518

evaluation, dynamics-informed perception, and supervised policy learning to enable effective robotic519

cutting in general scenarios.520

References521

[1] G. Williams, P. Wagener, B. Goldfain, P. Drews, J. Rehg, and E. Theodorou. Information–522

theoretic model predictive path integral control: Theory and applications to robotics. In Proceed-523

ings of Robotics: Science and Systems (RSS), 2017.524

[2] A. Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the data525

distribution, 2024. URL https://arxiv.org/abs/2310.16834.526

17

https://arxiv.org/abs/2310.16834

	Appendix
	Additional Manipulation Tasks
	Cream Writing
	Ice-Cream Scooping
	Discussion

	Pyramid Cutting Task
	Perception Model Architecture Details
	PointNet-Based Perception Model Architecture
	Graph Network Architecture
	Empirical Evaluation of Perception Models

	Policy Model Architecture Details
	Policy Model Architecture - PDDP

	Material Point Method in Details
	Particle-based Damage-tracking and Topological Reconstruction in Details
	Pose-Invariant Shape Evaluation via Spectral Analysis in Details
	MPPI for Data Generation
	Policy Learning in Details
	Dynamics-Informed Perception Module
	Particle-based Score-Entropy Discrete Diffusion Policy

